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We study the diffusion and phase separation properties of a gradient- based lattice Boltzmann model of
immiscible fluids. We quantify problems of lattice pinning associated with the model, and suggest a scheme
that removes these artifacts. The interface width is controlled by a single parameter that acts as an inverse
diffusion length. We derive an analytic expression of a fully developed interfacial curve and show that inter-
faces evolve towards this stable distribution if no fluid is trapped. Fluid can become trapped inside a competing
phase if no connecting path to the bulk phase exists. Such trapped bubbles also evolve towards the fully
developed interfacial curve but constraints on mass conservation limit this development. We also show how
small numerical errors lead to spontaneous phase separation for all values of the diffusion length.
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I. INTRODUCTION

Since the development of the lattice BoltzmannsLBd
methodf1–3g it has often been used to study complex mul-
tiphase fluid flowf4–8g. The fundamental idea of the LB
method is to construct simplified kinetic models that incor-
porate the essential physics of microscopic or mesoscopic
processes. Macroscopic or hydrodynamic behaviors such as
interface dynamics naturally emerge as a result of these ki-
netics provided that correct conservation laws and symme-
tries such as rotational invariance are followed. The macro-
scopic dynamics of the fluid is the result of the collective
behavior of many microscopic particles and is not sensitive
to the underlying microscopic physics.

There are several LB models for simulation of immiscible
multiphase flow. Here we study the method based on color
gradientsf9g. The color-gradient method retains sharp inter-
faces and the surface tension in this model is set by a single
adjustable parameter and may be calculated analytically
f5,9g. An alternative multiphase LB model proposed by Shan
and Chenf10g is based on microscopic interactions between
particles. This model also has sharp interfaces and allows the
simulations of two phases of significantly different densities
in the case of one component fluid. Both of these models
have unphysical properties, e.g., the inconsistency between
thermodynamic and kinetic pressuref11g. In the Shan and
Chen model the surface tension is given by strength of the
microscopic interaction and the shape of the density profile
at the liquid-gas interface. Although it is possible to adjust
these two independently, keeping the density profile constant
and changing the surface tension requires the adjustment of
two parameters. Furthermore the absolute value of surface
tension is not known prior to evaluation of the density profile
on the interface. A third LB model of immiscible fluids was
proposed by Swiftet al. f11g using a free-energy approach.
Their model is constructed so that the pressure tensor is con-
sistent with the tensor derived from the free-energy function
of nonuniform fluids. This model leaves the interface width
relatively wide. There also exists a class of LB models that
are derived from kinetic equationsf12g. These models can

simulate two-phase miscible and immiscible fluid flow de-
pending upon the choice of the inteparticle interactions.
However in these models the magnitude of the surface ten-
sion is not knownf12g. Collectively, these models have been
applied to a multitude of multiphase flow problems, includ-
ing the verification of Laplace law and capillary wave dis-
persion f9,13,14g, spinoidal decompositionf15,16g, studies
of the Rayleigh-Taylor instabilityf7g, free surface flowf17g,
flows in porous mediaf18–20g, contact line motionf21g, and
diffusivity f12g.

All of the above models have their positive and negative
properties and the use of one instead of the other is a ques-
tion of taste and of the application of interest. Here we study
a modified version of the color-gradient method for three
reasons. First the interfacial width is small and hence the
position of the interface can be known accurately; second,
the value of the surface tension is easy to calculate and ad-
just; and third, it is straightforward to control the contact
angle and the wetting tendency of the solid phase. All of
these properties are advantages when studying complex in-
terface motion in confined and/or complex geometries.

We focus our attention on a problem of lattice pinning.
We first discuss the origin of the pinning and show how it
can be removed by changing the color redistribution scheme.
We then go on to analyze the diffusive properties of the new
color redistribution and explain why the width of the inter-
facial region in this type of models is set by a single param-
eter b that appears in the previous work of d’Ortonaet al.
f22g. We propose thatb plays the role of an inverse length
scale and show that the fully developed interfacial curve can
be accurately predicted. We also show how spontaneous
phase separation takes place in models of this type.

The remainder of this paper is organized as follows. In
Sec. II the LB color gradient method is reviewed. In Sec. III
we describe the lattice pinning problem. Section IV contains
our solution to the lattice pinning problem. In Sec. V we
discuss the interfacial properties of the improved method.
Finally Sec. VI contains a description of spontaneous phase
separation.
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II. METHOD

The LB methodf1–3,5g is constructed on a regular lattice
face-centered hypercubicsFCHCd lattice. At each lattice
point the populationsNi

ssx ,td are known. The subscripti
denotes the lattice directionci connecting two neighboring
lattice sites, the superscripts denotes the particle typesred
or blue particles in the color gradient methodd, x is the posi-
tion in the lattice, andt is the simulation time step. These
give the density, the velocity and the pressure/stress of the
fluid at a given point.

Each simulation time step consists of the following steps.
s1d Propagation: Particle populations hop to neighboring

sites,Ni
ssx+ci ,td=Ni

s8sx ,t−1d.
s2d Calculation of pseudoequilibrium populationsNi

sseqd,

Ni
sseqdsNs,ud = NsS1 − d0

b
+

D

c2b
ci ·u +

DsD + 2d
2c4b

cici:uu

−
D

2bc2u ·uD , s1d

N0
sseqdsd0,ud = NsSd0 −

1

c2u ·uD . s2d

These quantities have the following interpretations:Ns is the
number of particles of types, andu is the fluid velocity. 0
,d0,1 is the proportion of the rest particles, which deter-
mines the compressibility of the fluid. We used0=1/3. b is
the number of lattice directions, which for the FCHC lattice
has the valueb=24. c2 is the length of the vectorsci
squared, which for the FCHC isc2=2, andD is the dimen-
sion of the lattice.sFor the FCHC lattice isD=4.d The
pseudoequilibrium populations are chosen in such a way
that in the long-wavelength limit the Navier–Stokes equa-
tions with an ideal gas equation of state are obtained
f5,6,10g.

s3d Collision: The populationsNi
s relax towards the pseu-

doequilibrium distributions,

Ni
s8sx,td = s1 + ldNi

ssx,td − lNi
sseqdsx,td. s3d

Here l is a relaxation parameter which acts as an inverse
relaxation time. It also sets the value of kinematic viscosity,
i.e., n=−fc2/lsD+2dg−fc2/2sD+2dg f5,6,10g. These colli-
sion and relaxation rules lead to the following macroscopic
mass and momentum equationsf5g:

]tr + = ·v = 0, s4d

]tv + v · = v = − = p + n¹2v, s5d

wherer=oi,sNi
s, p= 1

3r, andv=ru.
s4d External forces: Addition of, e.g., gravity or a pres-

sure gradient.
s5d Two-phase step, which is discussed further below.
In the simplest case two immiscible fluids are identical

except they have different “color,” red and blue. These two
fluids are immiscible. The surface tension is introduced by
creating an anisotropic pressure field. Particles are redistrib-
uted in such a fashion that there are more particles moving

perpendicular to an interface than parallel to it. Consequently
blue particles move preferentially towards blue particles and
red particles towards red particles, inducing spontaneuos
phase separation. The two-phase step in the color gradient
method can roughly be divided into the following substeps.

s1d Calculation of the color gradient: For brevity we de-
noteNred with R andNblue with B. We use the notationRi and
Bi for the numbers of red and blue particles traveling to
lattice directionci, respectively. We also setNi =Ri +Bi. The
color gradient is given by

fsx,td = o
i

cio
j

fRjsx + ci,td − Bjsx + ci,tdg. s6d

s2d Perturbation of the populations,

Ni8sx,td = Nisx,td + Aufsx,tduF sci · fd2

f · f
−

1

2
G . s7d

The parameterA is linearly proportional to the magnitude of
surface tension such thatf5,9g

s =
− 192rA

l
. s8d

s3d Redistribution of color: Color but not mass is redis-
tributed to minimize the diffusion of color across the inter-
facef9g. The 18 directionsci are ordered in descending order
starting from the one closest to the color gradient. The direc-
tions closest to the color gradient are occupied by red par-
ticles and the rest with blue particles conserving the mass of
each particle type. This step is considerably simplified and
improved in this paper.

III. LATTICE PINNING

The color gradient method has a potentially serious draw-
back, lattice pinning. Consider the following situation: a lat-
tice site is on or near an interface of blue and red fluid. Now
suppose the fluids have a constant flow velocity everywhere
on the lattice, but that this velocity is not high enough to
move significant populations of red particles from one site to
another. In this situation the interface cannot move and is
pinned to the lattice.

In Fig. 1 we show how the velocity of a small red bubble
depends on its size. We plot the average velocity of the red
particles as a function of the effective radius of the bubble.
This is given byR=ÎM /rp, where M is the mass of the
bubble andr is the density of the fluid. As we see bubbles as
large as seven full lattice sitessR=1.49d are completely
pinned. Some of the smaller bubbles were not pinned, and
we suspect this to be a result of the symmetric configurations
available for the bubble at these sizes. This seems to depend
on the initial conditions however, and any bubble smaller
than R,1.13 is always pinned, any bubble between sizes
1.13,R,1.49 is likely to be pinned, and any bubble be-
tween sizes 1.49 and 1.59 can become pinned.

What causes this lattice pinning? The clearest case of this
phenomenon can be seen in very small bubbles of red fluid
immersed in a blue sea. Figures 2 and 3 demonstrate one
case. Although we show the small bubble case as a demon-
stration the effect persists on larger scales.

M. LATVA-KOKKO AND D. H. ROTHMAN PHYSICAL REVIEW E 71, 056702s2005d

056702-2



For our purposes there are two specific cases where this
effect is significant. In the first case, small bubblessi.e.,
bubbles concentrated around a single lattice pointd will not
move unless they are forced very hard. This problem is sig-
nificant when studying the separation and flow of an initally
mixed state. The second case concerns nonwetting and wet-
ting fluid that becomes stuck near walls, and leads to a
history-dependent contact angle. In this paper we specifically
address the first case; the latter will be discussed in a subse-
quent studyf23g.

In Fig. 3 we further study the lattice pinning presented in
Fig. 2. Figure 3sad gives the direction of the color gradient at

each site. The directions closest to the color gradient are
numbered. These directions are occupied by red particles, the
last one being partially occupied by red and by blue. Figure
3sbd shows a graphical presentation of the concentration of
red color at each site and of the excess flows from one site to
the other. One can see that most of the red fluid is going
around in a figure-eight shaped curve. What makes this pos-
sible? In the middle-left site the last direction to send red
particles is the top-right direction and in the middle-right site
the last direction to send red particles is the top-left direction.
All these particles return to the middle-right and middle-left
sites because the first direction to send particles on both top-
left and top-right sites is the downwards direction.

To understand this problem we make three important ob-
servations. First, we note that the red particle distribution is
not symmetric with respect to the color gradient. Second, we
notice that the lattice pinning does not necessarily have any-
thing to do with the spurious currents that are present near a
two-fluid interfacef5g. In the example we are showing there
are no spurious currents inNi =Ri +Bi si.e., the red+blue fluid
combinationd, nor are there any interfacial anisotropic pres-
sure gradients, becauseA, the parameter controlling the sur-
face tension, has been set to zero. The only reason that the
red particles are pinned is because of the color redistribution.
Because the directions close to the color gradient are filled
with red particles in order of proximity, the red particles are
allowed to wander around in circles. Our third observation is
that there is a limit to lattice pinning. If the fluid velocity is
high enough or if the bubble is large enough this kind of
trapping phenomena cannot take place. It is essentially one
partially filled direction that allows for the collective flow
from left to right to be leaked back to the left. If the amount
of the collective flow exceeds the “leak-back capacity” the

FIG. 1. We plot the average velocity of the red bubble as a
function of the bubble size.Rred bubbleis the effective radius of the
bubble,vred bubble is the average velocity of the bubble, averaged
over 10 000 time steps, andvblue is the velocity of the surrounding
blue fluid.

FIG. 2. Lattice pinning in action. The velocity at each lattice site
is Nu=oNici =9.393310−3x̂. The red particles go around in small
loops and at each site the number of red particles is conserved.
While we have a nonzero flow velocity the red particles do not
move, and are thuspinnedto the lattice.

FIG. 3. sColor onlined sad The total red population at each site,
and the directions of color gradients arising from this distribution.
The directions closest to the color gradient are shown numbered,
starting from the direction closest to the gradient. These directions
send red particles, the last one sending a fraction of red and blue
particles. The remaining directions send blue particles.sbd We show
schematically the red populations at each site, and the amount of
red particles moving through each link at each simulation time step.
We have cancelled out equal and opposite currents hence showing
only the excess flow of the red particles.
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red fluid will move. The largest leak-back capacities are typi-
cally found in cases where there are sharp edges or cusps,
like the small bubbles.

IV. IMPROVED METHOD

The crucial part of this solution is to allow the red and the
blue fluids to moderately mix and to keep the color distribu-
tion symmetric with respect to the color gradient. The reason
for lattice pinning is that at the sites where it happens all of
the particles of one kind are sent to one direction and hence
they cannot move from one site to another. An obvious way
to fix this problem is to send only a fraction of particles of
one color to these directions. This will also allow the inter-
face to move slowly and without pinning. A solution to this
problem has been proposed in a different context by
d’Ortona et al. f22g and Tölkeet al. f24g. The method of
d’Ortona et al. sends a fraction of particles that is propor-
tional to the inner product of the color gradient and the lat-
tice direction in question. We changed the distributions of
d’Ortonaet al.slightly in order to make certain that no nega-
tive populations of either type of particles will occur. We use
the following redistribution:

Ri =
R

R+ B
Ni8 + b

RB

sR+ Bd2Ni
seqdsN,0dcosw, s9d

Bi =
B

R+ B
Ni8 − b

RB

sR+ Bd2Ni
seqdsN,0dcosw, s10d

Here Ri and Bi are the numbers of red and blue particles
going to directionci, R and B are the total numbers of red
and blue particles at a given site,Ni8 is defined by Eq.s7d,
Ni

seqdsN,0d is the zero-velocity equilibrium distribution,b is
a parameter giving the tendency of the two fluids to separate,
and w is the angle between the color gradientf and the di-
rection ci. Without the last term in the equations, red and
blue particles would be distributed according to their num-
bers and there would be no tendency for the fluids to sepa-
rate.b can take any value between 0 and 1. Asb increases
the interface is less diffuse, i.e.,b sets the surface width. If
b.1 there can be negative populations of particles, but if
these are kept small the stability is maintained.

We test the model in the case of small bubbles as in Sec.
III. We initialize the lattice with fluid that has a constant flow
velocity u=5.4310−3x̂. Any velocity can be chosen for
qualitatively similar behavior. We use a two-dimensional
system of size 30330 with fluid densityN=10, and initialize
a small red bubble in the center of this space. The size of this
bubble is adjustable. In Fig. 4 we plot the average velocity of
the red bubble averaged over 10 000 time steps after the
steady state has been reached as a function of bubble mass,
for the improved method whenb=1.0, 0.9, 0.8. We plot the
average velocity of the red bubble averaged over 10 000 time
steps after the steady state has been reached.

For b=1.0 only bubbles smaller than size 18 are com-
pletely pinned. As the bubble size increases the velocity ap-
proaches the surrounding fluid velocity. As the value ofb
decreases the pinning threshold also decreases. Small un-

pinned bubbles tent to move in bursts, i.e., they remain es-
sentially pinned for a while, then jump to the next lattice site
and so on. We suspect that, because of the ability for the two
fluids to mix, the largest leak-back-capacity is eventually
filled and the bubble is allowed to move to the next site.

Comparing Fig. 4 to Fig. 1, we see that the improved
method clearly reduces the problem of lattice pinning. We
suspect that the ability to form symmetrical bubbles at
smaller sizes and the slightly larger bubble radius are respon-
sible for this effect. The lattice pinning is not completely
removed whenb=1.0, but its effects are reduced. Other ad-
vantages of the new method include the ability to remove
history dependent contact anglesf23g and the relative
smoothness of the interfaces. Significantly, the improved
method is much easier to implement than the old method.

V. DIFFUSIVE PROPERTIES

In this section we study the diffusive properties of the
model, more specifically how spontaneous phase separation
takes place. We first consider an extremely simplified case of
a one-dimensional diffusive D1Q2 modelf25g, with zero ve-
locity everywhere. In this model there are two velocitiesc1

= x̂ and c2=−x̂. The equilibrium distributions areNi
seqdsx ,td

=rsx ,td /2. If the system starts from the case of zero velocity
everywhere and constant densityr thenNisx ,td=r /2 for all
x and t. Then Eqs.s9d and s10d can be written as

Risx,td = Rsx,td/2 + sgnsfds− 1di−1bfsx,tdf1 − fsx,tdg,

i = 1,2, s11d

Bisx,td = Bsx,td/2 − sgnsfds− 1di−1bfsx,tdf1 − fsx,tdg,

i = 1,2, s12d

where f is the fraction of red particles, i.e.,f
=R/r , sgnsfd=1 if f points to thex direction, sgnsfd=−1 if f
points to −x direction, and sgnsfd=0 if f =0.

FIG. 4. Comparison of the old method to the improved method.
The units are the same as in Fig. 1.Rred bubbleis the effective radius
of the bubble,vred bubbleis the average velocity of the bubble, aver-
aged over 10 000 time steps, andvblue is the velocity of the sur-
rounding blue fluid. Forb=1.0 only bubbles smaller than sizeR
,0.75 are completely pinned, and for smallerb this size is even
reduced. In the case of the old method, bubbles as large as sizeR
=1.59 could be pinned and all bubbles smaller thanR,1.16 are
always pinned.
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It is easy to see that if there is no color gradient, i.e.,f
;0, then the distributionsRi and Bi do not change. This
means thatRsx ,td;R andBsx ,td;B is an equilibrium dis-
tribution. However this distribution is unstable. Even the
smallest change from it will lead to spontaneous phase sepa-
ration. It is also relatively straightforward to see that any
linear ramp, i.e.,Rsx ,td=a+bsx−x0d andBsx ,td=N−Rsx ,td
is an equilibrium distribution. This is because at each node
within the ramp the number of blue and red particles is con-
served. This distribution is even stable to small deviations,
i.e., deviations that do not change the direction of the color
gradient at any of the nodes. However in the case of a linear
ramp there is a net flow of red particles towards the excess of
red particles and a net flow of blue particles towards the
excess of blue particles. Hence this distribution cannot stay
stable in a closed system with no sources or sinks of blue and
red particles. To find the stable equilibrium distribution of
red and blue particles in the case of a closed system, we
initialize a lattice of 100 sites with a linear rampRsx,td
=5.0+2.0sx−50d andBsx,td=10.0−Rsx,td and used periodic
boundary conditions. The results as a function ofb are
shown in Fig. 5.

The resulting fully developed interfacial curves may be
quantitatively predicted. Because there are no currents of ei-
ther blue or red particles in steady state, at each site the
number of red particles leaving the site to the left-hand side
must equal the number of red particles arriving from the
left-hand side. Consider a situation where the color gradient
points towards the right-hand side. Let the amount of red
particles on the site on the left-hand side beR and on the site
on the right-hand side beR+v. Then

R/2 + bfs1 − fd = sR+ vd/2 − bfs1 − fd,

v = 4bfs1 − fd. s13d

The first derivative off can be approximated as

df

dx
=

R+ v

N
−

R

N
=

v

N
. s14d

If these two equations are combined one finds

df

dx
=

4b

N
fs1 − fd. s15d

This equation for the shape of the fully developed interfacial
curve is the same for all models using the improved color
gradient methodfi.e., Eqs.s9d and s10dg; only the prefactor
Ksbd changes. The solution to Eq.s15d gives

fsxd =
CeKsbdx

1 + CeKsbdx . s16d

If one further knows the midpoint of the interface, i.e., where
fsx=x0d=0.5, the full form of the equation is known,

f =
eKsbdsx−x0d

1 + eKsbdsx−x0d . s17d

In Fig. 5 we plot these curves versus the measured interfacial
curves and can see an excellent agreement. We also see why
b sets the length scale. On large scalesfx−x0@1/Ksbdg one
always sees red particles separated from blue particles. At the
interfacial regions the red and the blue particles mix. The
width of the interfacial regions is given byK−1sbd. The in-
terfacial length scale is therefore inversely proportional tob.
For b=1 and the one-dimensional modelsN=10,f=0.5d we
obtain a length scale of 10, which is consistent with Fig. 5.

We next investigate the one-dimensional projection of the
full four-dimensional FCHC LB model presented in the first
section. We setA=0, but we also show, just as in Ref.f22g,
that this parameter has only a weak effect on the interfacial
curve. The amount of particles traveling from right to leftsor
left to rightd is 1

18N+4 1
36N= 1

6N. The amount of total change
caused by the color gradient isf 1

18+ 4
36s1/Î2dg /bNfs1−fd

=fs1+Î2d /18gbNfs1−fd. If we combine these we find

R

6
+

1 +Î2

18
bNfs1 − fd =

R+ v

6
−

1 +Î2

18
bNfs1 − fd

s18d

and therefore

df

dx
=

2

3
s1 +Î2dbfs1 − fd. s19d

thereforeKsbd= 2
3s1+Î2db.

In Fig. 6 we show the fully developed interfacial curve for
the one-dimensional projection of the full three-dimensional
LB model with the improved color gradient scheme. The
interfacial curves for differentb are collapsed onto a single
curve by rescaling thex axis with b. The curve going
through the data points is given by Eq.s16d with Ksbd given
by s19d.

In Fig. 7 we show how the interfacial curve changes as a
function of A. Here we chooseb=1. We see little or no
change as expected.

FIG. 5. One-dimensional diffusive multiphase LB model. We
plot the fully developed stable interfacial curves as a function ofb.
For bù1.0 the system size is 100 lattice sites; forbø0.5 we use a
larger system size of 500 lattice sites in order to obtain fully devel-
oped interfacial curves. Periodic boundary conditions are used. The
smooth curves show the theoretical prediction of Eq.s17d.
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We next study the method in a two-dimensional system.
We initialized a red bubble of radius 20 in a system of size
1003100, i.e., we filled sites for whichsx−50d2+sy−50d2

,202 with red fluid and the rest of the sites with blue fluid at
rest. After 100 timesteps a fully developed interfacial curve
is reached. The interface is fully symmetric and the curve has
the same predicted shape in all directions. The interfacial
curve for this bubble in the case ofb=1.0 is shown in Fig. 8.
We also initialized a red bubble of radius 20 in a fully three-
dimensional system of size 10031003100 obtaining a fully
developed interfacial curve in all directions.

VI. SPONTANEOUS PHASE SEPARATION

To further understand the onset of the spontaneous phase
separation, we study in this section a case where small nu-
merical errors lead to a rapid phase separation. We tested the
model in a three-dimensional system with periodic boundary
conditions and system size of 303333 lattice sites, with a
linear ramp inx direction. Figure 9 shows the results sche-
matically, and Fig. 10 shows the phase separation explicitly.
We started the system as in the case of one-dimensional case
with a linear ramp, i.e.,N=10Rsx ,t=0d=5.0+2.0sx−15d
andB=N−R.

In the early stages the system behaves exactly as the one-
dimensional system but at one point due to round-off errors

one of the sites becomes slightly less red. This small error
causes the color gradient close to it to point away as seen in
Fig. 9 and slowly but certainly this small deviation grows
larger. When it becomes large enough it spreads to the neigh-
boring sites and at one point there is a reversal of the direc-
tion of the color gradient at one of the sitessfrom positive
x-direction to negativex-directiond. This leads to a nucle-
ation of a quasi-one-dimensional red bubble. At the points of
the color gradient reversal both the left-hand side and the
right-hand side try to develop towards the fully developed
interfacial curve, but because there is not enough space and
the system is effectively one-dimensional, the color is
trapped into small red and blue islands. The change in the
interfacial curve is largest at these gradient reversal sites. If
there would be no reversals the system would always evolve
towards the fully developed interfacial curve.

Once these red and blue islands have formed the relative
differences between the red and blue content within the is-
land continues to decrease, i.e., within the islandsin the y
andz directionsd the behavior of the system is diffuse. There
are two reasons for this: first, the color gradient is largest in
the x direction; and second, there is no space for the interfa-

FIG. 6. The fully developed interfacial curve for the one-
dimensional projection of the three-dimensional LB method. The
curves with differentb are collapsed into a single curve by rescal-
ing thex axis.

FIG. 7. Surface tension included. As theA parameter changes
the surface width remains the same. We useb=1.

FIG. 8. The interfacial curve for two-dimensional bubble. We
plot the amount of the red fluid as a function of position. We have
bisected the bubble in four different directions. The solid line is the
theoretical curve given by Eqs.s17d and s19d.

FIG. 9. Early stages of spontaneous phase separation in quasi-
one-dimensional system, at timest1, t2, t3. We show the relative
amounts of red particles as the sizes of the circles and the color
gradients with an arrow. The system has periodic boundary condi-
tions in st1d direction. In the beginningyall the color gradients are
pointing straight to the right-hand side. At some pointst2done of the
sites gets a little less red particles than it’s supposed to and this
turns the color gradients away from that row. The column that con-
tained the original site is affected the strongest. This leads at one
point to a reversal of the direction of the color gradientst3d. Even-
tually this induces the reversal in the whole column and spontane-
ous phase separation takes place.
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cial curve to develop in they and z directions. The color
gradient is largest in thex direction because that is its origi-
nal direction. Even after the color gradient obtainsy and z
components due to the numerical errors this direction re-
mains dominant. This is because the increase in the color
gradient in they and z directions is limited by the system
size. The antidiffuse behaviorsi.e., separation of phasesd
takes place in the direction of the color gradient. In the di-
rections perpendicular to the color gradient there is no
antidiffuse tendency and the two phases mix. The blue and
red particles are therefore mixed in these islands.

We have shown that if there is a color gradient present in
the system it tries to evolve towards a fully developed inter-
facial curve. This development separates the two fluids. The
development starts from the places with color gradient inver-
sions, i.e., places whereu¹2fu attains its maxima, and propa-
gates outwards. This behavior is similar to the early stages of
spinoidal decomposition, see, e.g., Ref.f26g. In fact it should
be possible to measure the antidiffusivity as a function ofb
by measuring how the interfacial curve changes. If there is
no space for one colored fluid to go this process stops. In one
dimension with zero velocity no gradient inversion is revers-
ible and all fluid becomes stuck into these small islands. In
two and higher dimensions the process continues as long as
the fluid has a chance to connect with other fluid of the same
kind. The interfaces of small bubbles may not be fully de-
veloped but larger ones are. When one adds surface tension

into the equation the system starts trying to minimize the
surface area between red and blue fluids and the separation
continues. The separation always happens regardless ofb. b
merely sets the length scale of the interface.

VII. CONCLUSIONS

We have reported and quantified a problem of lattice pin-
ning associated with the LB color gradient method. These
problems can be fixed by changing the recoloring step and
allowing wider interfaces. This improved recoloring step is
much easier to implement than the old one. With the im-
proved method the distribution of red and blue particles is
symmetric around the color gradient. We have studied inter-
facial and phase separation properties of the improved
method and have shown that the method significantly dimin-
ishes the problem of lattice pinning. The analytical expres-
sion for the shape of the interfacial curve is found, and the
parameterb is shown to act as a measure for the inverse
interfacial width.
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